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Abstract

Context Fine-scale ecological data collected across

broad regions are becoming increasingly available.

Appropriate geographic analyses of these data can

help identify locations of ecological concern.

Objectives We present one such approach, spatial

association of scalable hexagons (SASH), which

identifies locations where ecological phenomena

occur at greater or lower frequencies than expected

by chance. This approach is based on a sampling frame

optimized for spatial neighborhood analysis,

adjustable to the appropriate spatial resolution, and

applicable to multiple data types.

Methods We divided portions of the United States

into scalable equal-area hexagonal cells and, using

three types of data (field surveys, aerial surveys,

satellite imagery), identified geographic clusters of

forested areas having high and low values for (1)

invasive plant diversity and cover, (2) mountain pine

beetle-induced tree mortality, and (3) wildland forest

fire occurrences.

Results Using the SASH approach, we detected

statistically significant patterns of plant invasion, bark

beetle-induced tree mortality, and fire occurrence

density that will be useful for understanding macro-

scale patterns and processes associated with each

forest health threat, for assessing its ecological and

economic impacts, and for identifying areas where

specific management activities may be needed.

Conclusions The presented method is a ‘‘big data’’

analysis tool with potential application for macrosys-

tems ecology studies that require rigorous testing of

hypotheses within a spatial framework. This method is

a standard component of annual national reports on
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forest health status and trends across the United States

and can be applied easily to other regions and datasets.

Keywords Big data � Ecological monitoring �
Hotspots � Invasive plants � Mountain pine beetle �
Wildfire

Introduction

Macrosystems ecology treats the components of large

areas, from regions to continents, as a system of

interacting parts; within this context, it integrates fine-

scaled mechanisms with broad-scale patterns and

processes to help improve predictions of environmen-

tal change and to better inform environmental policy

(Heffernan et al. 2014). It uses novel approaches and

applies existing methods in new ways to study

ecological processes interacting within and across

scales, analyzing increasingly large volumes of data

(Levy et al. 2014). Macrosystems ecology tools and

concepts may prove particularly helpful for efforts to

assess, monitor, and analyze broad-scale indicators of

ecosystem health.

Healthy forested ecosystems in particular are vital

to human communities (Edmonds et al. 2011),

possessing the capacity to provide a wide range of

goods and services, to safeguard biological diversity,

and to contribute to the resilience of ecosystems,

societies, and economies (United States Department of

Agriculture Forest Service 2011). The consistent,

large-scale, and long-term monitoring of key indica-

tors of forest health status, change, and trends is

necessary to identify forest resources deteriorating

across large regions in the face of a long list of threats

including invasive species, insect and disease out-

breaks, catastrophic fire, fragmentation, and the

effects of climate change (Riitters and Tkacz 2004).

For more than a decade, United States government

agencies have collected standardized medium- to

high-resolution forest health data that span the width

and breadth of the country. These include data

collected via satellite sensors, such as daily moderate

resolution imaging spectroradiometer (MODIS)

Active Fire Detections (Justice et al. 2002; Justice

et al. 2011); by fixed-winged aircraft, especially

annual aerial surveys of forest insect and disease

damage (United States Department of Agriculture

Forest Service 2015a); and by ground-based field

crews, most prominently by the USDA Forest Service

(USFS) Forest Inventory and Analysis (FIA) program

across approximately 130,000 fixed-area plots (Bech-

told and Scott 2005; Woudenberg et al. 2010). These

datasets are vast, regularly accumulating new infor-

mation from 304 million ha of forests, encompassing

one-third of the terrestrial area of United States (Smith

et al. 2009).

It is no small challenge to extract useful informa-

tion from these extensive datasets. One common

approach is to aggregate data to political units such as

states or counties, or to environmentally defined

ecoregions (e.g., Potter and Woodall 2012; Riitters

and Wickham 2012; Potter and Koch 2014). Doing so

is not always appropriate, however, and can have

drawbacks (Coulston and Riitters 2003). First, units

within administrative jurisdictions and ecological

regions often differ considerably in spatial extent,

which could result in highly inconsistent sample sizes,

leading to potential biases in subsequent statistical

analyses. Second, these units may be inappropriate for

analyzing or displaying the fine- to moderate-scale

impacts and extents of many ecological phenomena

and processes because of uncertainty about the areas

that exert contextual influence on a phenomenon or

process under study (Kwan 2012). Third, aggregation

must be done thoughtfully and cautiously because of

the modifiable area unit problem (MAUP), through

which aggregation of the same data to different scales

can yield different results and conclusions (Jelinski

and Wu 1996; Dark and Bram 2007). Fourth,

phenomena that cross the boundaries of adjacent

geopolitical or ecological regions may not be detected

because of the dilution of the signal from the affected

parts of the sampling regions (Fotheringham and

Wong 1991). Finally, averaging data across broad

regions may obscure extreme values that are indica-

tions of emerging problems and may conceal spatial

patterns that could be important for understanding the

dynamics of a given threat (Coulston and Riitters

2003).

Targeted spatial analyses, rather than aggregation

to large regions, are sometimes necessary to pinpoint

areas of concern for operation-scale environmental

research, monitoring, and management. Researchers

in several fields regularly apply techniques for

detecting geographic clusters, or hotspots, of a

particular phenomenon for follow-up analyses,
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including in epidemiology and public health (e.g.,

Kulldorff et al. 2009; Rogerson 2010; Netto et al.

2012), the social sciences (e.g., Lepczyk et al. 2007;

Hong and O’Sullivan 2012; Johnston and Ramachan-

dran 2014), and ecology and conservation (e.g.,

Kamei and Nakagoshi 2006; Hernandez-Manrique

et al. 2012; Ma et al. 2012). Within the context of

forest health monitoring, Coulston and Riitters

(2003) used spatial scan statistics to identify clusters

of forest fragmentation in the southeastern United

States and of forest insect and pathogen presence in

the Pacific Northwest, while Riitters and Coulston

(2005) applied the same approach to detect hotspots

of forest perforation. Bone et al. (2013) implemented

local Moran’s Ii, a local indicator of spatial associ-

ation (LISA), to estimate the risk of mountain pine

beetle infestation in British Columbia, while Tim-

ilsina et al. (2013) used the Getis–Ord Gi* statistic, a

different LISA, to map hotspots of high forest carbon

stocking in Florida.

We propose a sampling and analysis approach for

pinpointing areas of ecological concern that (1)

allows for the identification of locations where

ecological health metrics are statistically distinct

from the surrounding landscape, (2) is based on an

equal-area sampling frame optimized for spatial

neighborhood analysis, (3) allows the sizes of

sampling units to be adjusted to the appropriate

spatial resolution of analysis, and (4) is applicable to

many types of fine-resolution data collected across

broad extents. This spatial association of scalable

hexagons (SASH) method consists of dividing an

analysis area into scalable equal-area hexagonal

cells within which data are aggregated, followed by

the identification of statistically significant geo-

graphic clusters of hexagonal cells within which

mean values are greater or less than those expected

by chance. To identify these clusters, we use a

Getis–Ord (Gi*) hotspot analysis (Getis and Ord

1992), one of the most popular local indicators of

spatial association. LISAs like Gi*, which quantify

areas in which clusters of density or intensity are

statistically distinct from patterns in the surrounding

landscape (Johnston and Ramachandran 2014), are

also able to assess the statistical hypothesis that

observed patterns arose by chance, with the rejection

of this null hypothesis used as the threshold for

defining geographic hotspots and coldspots (Sokal

et al. 1998; Nelson and Boots 2008).

In addition to maintaining equal areas across the

analysis region, the hexagons used in SASH are

compact and uniform in their distance to the centroids

of neighboring hexagons, meaning that a hexagonal

lattice has a higher degree of isotropy (uniformity in

all directions) than does a square grid (Shima et al.

2010). These are convenient and highly useful

attributes for spatial neighborhood analyses. These

scalable hexagons also are independent of geopolitical

and ecological boundaries, avoiding the possibility of

different sample units (such as counties or watersheds)

encompassing vastly different areas. The area of

hexagons used in each analysis can be determined

based on ecological considerations, on sampling

intensity, or on the limits of spatial dependence across

the global data set.

We present three SASH example analyses using

data collected in the United States (1) from ground-

based surveys (USDA Forest Service inventory data of

invasive plant species cover and diversity in the

South), (2) from fixed-winged aircraft (aerial survey

data of forest mortality caused by mountain pine

beetle, Dendroctonus ponderosae, in the West during

three separate four-year timeframes), and (3) by

satellite (annual densities of MODIS fire occurrence

detections). These analyses, by encompassing a vari-

ety of spatial extents, hexagon sizes, data collection

timeframes, and spatial data formats, aim to illustrate

the wide applicability of the SASH approach for

identifying statistically significant geographic hot-

spots and cold spots of ecological phenomena related

to environmental health. The SASH analytical

approach is a standard component of annual USDA

Forest Service national reports that assess forest health

across broad regions (e.g., Potter 2015b; Potter and

Paschke 2015), which in turn are used to inform

management and policy decisions.

Materials and methods

Data

Ground-collected invasive plant data

The USDA Forest Inventory and Analysis (FIA)

program is the primary source for information about

the extent, condition, status and trends of forest

resources in the United States (Smith 2002). FIA
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applies a nationally consistent sampling protocol

using a quasi-systematic design to conduct a multi-

phase inventory of all ownerships; the national sample

intensity is approximately one plot per 2428 ha of land

(Bechtold and Patterson 2005). Forested plots, approx-

imately 130,000 in total, are visited every 5 to 7 years

in the eastern United States and every 10 years in the

western part of the country. Permanent fixed-area FIA

inventory plots (approximately 0.067 ha in size,

consisting of four, 7.2-m fixed-radius subplots spaced

36.6 m apart in a triangular arrangement with one

subplot in the center) are established in forested

conditions when field crews visit plot locations that

have accessible forest land. Field crews collect data on

more than 300 variables, including forest type, tree

species, site conditions, and the presence of nonnative

invasive plant species (Smith 2002; Woudenberg et al.

2010).

FIA defines ‘‘invasive plants,’’ in accordance with

U.S. Executive Order 13112, as exotic plant species of

any growth form likely to cause economic or envi-

ronmental harm (Ries et al. 2004). FIA field crews

collect invasive plant data based on region-specific

lists of problematic forest plant invaders agreed upon

by invasive plant experts (Oswalt et al. 2015). We

extracted invasive plant data from the 13-state south-

ern region, where the list of invasive forest plants

encompasses 53 species (Iannone et al. 2015). It is

important to note that our analyses focus on introduced

plants expected by experts to cause ecological and

economic problems and not on all introduced plants,

which are likely to be more numerous (Schulz and

Gray 2013) and to include species understood to have

negligible economic and environmental effects. We

conducted separate analyses for two invasion metrics:

plot-level monitored invasive species richness,

defined as the total number of monitored invasive

plants present on a plot, and invasive percent cover,

defined as the mean percent cover of all monitored

invasive plants across a plot’s forested subplots. These

measures of plot-level invadedness (i.e., degree or

level of invasion) may slightly underestimate the

overall presence of nonnative invasive species

because only species currently identified as problem-

atic are recorded. The analyses encompass 38,752 FIA

plots, most of which were inventoried between 2008

and 2012. Mean plot-level values for the two metrics

of plant invasion were determined for each hexagonal

sampling unit using ArcMap 10.1 (ESRI 2012).

Fixed-wing-aircraft-collected data of bark beetle-

associated tree mortality

USDA Forest Service Forest Health Protection (FHP)

national insect and disease survey data (United States

Department of Agriculture Forest Service 2015a)

consist of information from annual low-altitude aerial

survey and ground survey efforts. These surveys

identify areas of mortality and defoliation caused by

insects and pathogens, providing data that can be used

to identify geographic hotspots of forest insect and

disease activity (Potter and Paschke 2015). Because

the results are captured using aerial sketchmapping

(i.e., digitization of polygons by a human interpreter

aboard the aircraft), all quantities are approximate

‘‘footprint’’ areas for each agent, delineating areas of

visible damage within which the agent is present.

Unaffected trees may exist within the footprint, and

the intensity of damage within the footprint is not

reflected in the estimates of forest area affected.

We conducted three separate hotspot analyses, one

for each of three four-year windows (2002–2005,

2006–2009, and 2010–2013). For each, the variable

used in the hotspot analysis was the percent of total

surveyed forest area in each hexagonal sampling unit

with mortality attributed to mountain pine beetle

(MPB) during at least 1 year. For each time period,

we merged the 4 years of data to create a single non-

overlapping footprint of mortality; areas where

mortality was reported over multiple years during

the period were not counted more than once. MPB is

the most aggressive, persistent, and destructive bark

beetle in western North America, attacking most pine

species of the region as well as spruces in some

situations (Rocky Mountain Region Forest Health

Protection 2010). Although native to most of the

west, it exhibits periodic large outbreaks that cause

extensive tree mortality (Raffa et al. 2008; Meddens

et al. 2012). The ongoing bark beetle epidemic has

caused approximately 5.46 million ha of mortality in

British Columbia and between 0.47 and 5.37 million

ha of mortality in the western conterminous United

States; this mortality will likely leave a long

ecological legacy in these forests (Meddens et al.

2012). Data processing was conducted in ArcMap

10.1 (ESRI 2012), including use of a forest cover

layer derived from MODIS imagery by the U.S.

Forest Service Remote Sensing Applications Center

(United States Department of Agriculture Forest
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Service 2008) to determine baseline forested area

within the hexagons.

Satellite-sensor-collected data of wildfire occurrence

Annual monitoring and reporting of active wildland

fire events using the moderate resolution imaging

spectroradiometer (MODIS) active fire detections for

the United States database (United States Department

of Agriculture Forest Service 2015b) allows analysts

to spatially display and summarize fire occurrences

across broad geographic regions (Potter 2015b). A fire

occurrence is defined as one daily satellite detection of

wildland fire in a 1-km2 pixel, with multiple fire

occurrences possible on a pixel across multiple days.

The data are derived using the MODIS Rapid

Response System (Justice et al. 2002; Justice et al.

2011) to extract fire location and intensity information

from the thermal infrared bands of MODIS imagery

collected daily by two satellites at a resolution of

1 km2, with the center of a pixel recorded as a fire

occurrence. The resulting fire occurrence data repre-

sent only whether a fire was active, because the

MODIS data bands do not differentiate between a hot

fire in a relatively small area (0.01 km2, for example)

and a cooler fire over a larger area (1 km2, for

example). The MODIS active fire database does well

at capturing large fires during cloud-free conditions,

but may underrepresent rapidly burning, small and

low-intensity fires, as well as fires in areas with

frequent cloud cover (Hawbaker et al. 2008). It is

important to note that estimates of burned area and

calculations of MODIS-detected fire occurrences are

different metrics for quantifying fire activity. The

MODIS data contain both spatial and temporal

components because each 1-km pixel will have a

frequency of daily fire occurrences during a given year

since persistent fire will be detected repeatedly over

several days on a pixel. Analyses of the MODIS-

detected fire occurrences, therefore, measure the total

number of daily fires on 1-km pixels each year, as

opposed to only quantifying the area on which fire

occurred at some point during the course of the year.

For large-scale assessments, the dataset represents a

good alternative to the use of information on ignition

points, which may be preferable but can be difficult to

obtain or may not exist (Tonini et al. 2009).

We used data from the 2012, 2013, and 2014

calendar years to separately test for statistically

significant hotspots of fire occurrence within each.

The MODIS products for those years were processed

in ArcMap 10.1 (ESRI 2012) to determine the number

of fire occurrences per 100 km2 of forested area within

each hexagonal sampling unit in the conterminous

United States. This forest fire occurrence density

measure was calculated after screening out wildland

fires on nonforested pixels using a forest cover layer

(United States Department of Agriculture Forest

Service 2008).

Analysis

For each of the datasets described above, we sepa-

rately employed a Getis–Ord hotspot analysis (Getis

and Ord 1992) in ArcMap 10.1 (ESRI 2012) to identify

forested areas with the greatest exposure to the

individual forest health threat. Specifically, the

Getis–Ord Gi* statistic was used to identify clusters

of hexagonal cells within which the threat exposure

was higher or lower than expected by chance. This

statistic allows for the decomposition of a global

measure of spatial association into its contributing

spatial component, by location, and is therefore

particularly suitable for detecting nonstationarities in

a data set, such as when spatial clustering is concen-

trated in one subregion of the data (Anselin 1992).

The units of analysis were hexagonal cells gener-

ated in a lattice across the conterminous United States

via intensification of the U.S. Environmental Protec-

tion Agency’s Environmental Monitoring and Assess-

ment Program (EMAP) North American hexagon

coordinates, which are based on a truncated icosahe-

dron (a geometric solid with 20 hexagonal and 12

pentagonal faces) fit to the globe (White et al. 1992).

Briefly, these coordinates were the foundation of a

sampling frame in which a hexagonal lattice was

projected onto the region by centering a large base

hexagon of the truncated icosahedron over the conti-

nental United States (White et al. 1992; Reams et al.

2005). This base hexagon can be subdivided into many

smaller hexagons, depending on sampling needs, for

instance serving as the basis of the plot sampling frame

for the FIA program (Reams et al. 2005). These

hexagonal cells are compactly shaped with minimal

scale distortion, and are part of a hierarchical structure

for sampling enhancement and reduction (White et al.

1992). The subdivision of the base hexagon, as

detailed by White et al. (1992), is accomplished by
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an algorithm that intensifies the number of points in a

seven-point starting grid formed by the six vertices

and the center point of the base hexagon. Conceptu-

ally, this intensification process works by dividing the

base hexagon into six equilateral triangles defined by

each side of the hexagon and each radius between the

hexagon center point and a vertex. The sides of each of

these triangles are then divided into equal parts

determined by the sampling needs of an analysis,

and the endpoints of these equal parts are connected to

form a triangular lattice, with the centroid of each

triangle identified. The centroids are then tessellated to

generate a lattice of hexagonal cells. Notably, because

this process is done using an equal-area projection, the

hexagons maintain equal areas across the study region.

Determining the appropriate hexagon size for each

hotspot analysis requires careful consideration

because rescaling data represents a serious and often

overlooked challenge in spatial analyses with few

straightforward solutions (Openshaw 1977; Atkinson

and Tate 2000). To resolve the variation at a given

level of investigation, the intensity of sampling must

relate to the scale at which most of the variation in the

phenomenon of interest occurs (Oliver 2001). A

general spatial data aggregation principle, therefore,

is to create zonal systems which minimize intra-zonal

variances and maximize inter-zonal variances (Wong

2009). At least three zone-area-selection approaches

can be applied to accomplish this objective: (1)

selecting zones that are as small as possible while

encompassing enough data to allow for robust statis-

tical analysis; (2) selecting zones based on the scale at

which an ecological phenomenon occurs, or over

which management and monitoring priorities can be

decided; and (3) selecting zones based on the distance

at which spatial autocorrelation is maximized across

the sample data set, which can be computed using a

sample variogram (Atkinson and Tate 2000; Oliver

2001) or a measure such as Moran’s I, which is a

weighted correlation coefficient that can detect depar-

tures from spatial randomness (Cliff and Ord 1981).

For each of the three analyses described in this paper,

we determined the optimal size of our hexagons using

one of these approaches.

For the analysis of our invasion dataset, we

determined the suitable hexagon size based on sam-

pling considerations (option 1). Because the FIA

program is designed with counties as the main focus of

sampling and estimation procedures (Reams et al.

2005), we selected the hexagon size (approximately

1452 km2) to reflect the average size of counties in the

southern United States (1466 km2). The analyses of

degree of invasion encompassed 1081 hexagons with

forest in the South, containing an average of 35.9 FIA

plots. Hexagons with fewer than five FIA plots were

excluded from analyses.

For a hotspot analysis, it is often desirable to focus

on a scale of spatial variation that is associated with a

process or phenomenon (Atkinson and Tate 2000). For

our analyses of exposure to forest mortality associated

with MPB, we therefore determined the size of the

analysis hexagons based on dispersal of the organism

(option 2). Specifically, most dispersal by the insect is

expected to occur within a distance of 3 km, with the

possibility of a smaller amount of longer-distance

dispersal at varying distances (Shore and Safranyik

1992; Bone et al. 2013). We selected a hexagon size of

54 km2, because distance from centroid to the edge is

approximately 3.8 km. In the western United States,

there were 38,005 hexagons of this size containing

forest and for which we separately calculated the

percent of total surveyed forest area exposed to MPB

mortality within three four-year windows (2002–2005,

2006–2009, and 2010–13).

Often, spatial data are not collected to make

statistical inferences at a particular scale, and the

scale over which the ecological processes of interest

occur is unclear. In such circumstances, it is possible

to gain knowledge about the spatial structure of the

data by generating a semivariogram, which provides

an unbiased description of the scale and pattern of

spatial variation (Oliver 2001). Specifically, spatial

dependence exists at distances less than the range of

the semivariogram (Palmer 2002); the range of the

semivariogram, therefore, can be used to guide

sampling, with a useful guideline being to sample at

half the limit of spatial dependence, which is the

interval represented by half of the range (Oliver 2001).

We generated a theoretical semivariogram (i.e., a

stable semivariogram model (see Waller and Gotway

2004)) in ArcMap 10.1 (ESRI 2012) of forest fire

occurrence density (fire occurrences per area of forest)

within 54 km2 hexagons, based on the empirical

semivariogram; the resulting range was 25,825 m.

We therefore selected sampling hexagons of approx-

imately 635 km2, for which the distance from the

centroid to each edge is approximately 13,715 m, or

approximately half the range distance from the

72 Landscape Ecol (2016) 31:67–84
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semivariogram (option 3). The analyses of fire occur-

rence density encompassed 9733 forested hexagonal

cells across the conterminous United States.

For the analyses of each of these three datasets, the

Gi* statistic for each hexagon summed the differences

between the mean values in a local sample (including

the hexagon of interest) and the global mean of all the

forested hexagonal cells in the analysis. Because

normality for Gi* can be reasonably assumed when

sample units have at least eight neighbors (Ord and

Getis 1995; Nelson and Boots 2008), we defined the

local sample as a moving window consisting of each

hexagon and its 18 first- and second-order neighbors

(the six adjacent hexagons and the 12 additional

hexagons contiguous to those six) (Fig. 1). The Gi*

statistic is a standardized z score with a mean of 0 and a

standard deviation of 1. We assumed values greater

than 1.96 represent significant (p\ 0.025) local

clustering of high values and values less than -1.96

represent significant clustering of low values

(p\ 0.025). Therefore, a Gi* value of 1.96 indicates

that a value for a given hexagon and its 18 neighbors is

approximately two standard deviations greater than

the mean expected threat exposure in the absence of

spatial clustering, while aGi* value of-1.96 indicates

a threat exposure approximately two standard devia-

tions less than the mean expected in the absence of

spatial clustering. It is worth noting that the-1.96 and

1.96 threshold values are inexact because the corre-

lation of spatial data violates the assumption of

independence required for statistical significance

(Laffan 2006).

Results

Hotspots of forest plant invasion

The SASH approach revealed differing locations of

hotspots for invasive species diversity and invasive

species cover across the southeastern United States

(Fig. 2). For example, one hotspot of moderately high

invasive diversity (z[ 4) (Fig. 2a) stretched along the

Piedmont from the Virginia–North Carolina border

southwest to the Alabama–Georgia border, encom-

passing the Raleigh–Durham, Charlotte, and Atlanta

metropolitan areas. Another extended from north-

central Kentucky (including Louisville, Lexington and

Florence) south into the area of Nashville in north-

central Tennessee. Meanwhile, a coldspot of moder-

ately low invasive diversity (z\-4) extended from

the western Florida panhandle coast east across the

state to central peninsular Florida and north into

southeastern Georgia. A smaller coldspot of moder-

ately low invasive diversity (z\-4) was detected in

central Oklahoma.

The SASH analysis for invasive cover, meanwhile,

detected a single hotspot of very high invasive cover

(z[ 8) in north-central Alabama, centered on Birm-

ingham (Fig. 2b). Areas of moderately high invasive

cover encircle this area, extending into northeastern

Mississippi. Smaller hotspots of moderate invasive

cover were located in the Piedmont of North Carolina

and South Carolina, in western Kentucky and north-

western Tennessee, and in southeastern Texas sur-

rounding Houston. In all of the hotspots, only one or

two species were dominant contributors to invasive

cover, presenting a much different management

scenario, and a markedly dissimilar geographic pat-

tern, than invasive species diversity. Coldspots of

moderately low levels of invasive cover were detected

in northern Florida and southeastern Georgia, and in

south-central Oklahoma.

The hotspot patterns for both invasive metrics are

largely in keeping with results at the county level,

which showed that large percentages of subplots were

invaded in counties along a corridor from south-

central Virginia southwest into northern Georgia, as

well as in northern Alabama, northern and Southern

Mississippi, and coastal Texas (Iannone et al. 2015;

Oswalt et al. 2015). Those analyses also found

counties with lower percentages of invaded subplots

in northern Florida; in the Appalachian region; along

the coast of Georgia, South Carolina, and North

Carolina; and in central Oklahoma.

Hotspots of mortality associated with mountain

pine beetle

The SASH analysis of exposure to MPB mortality

across the western United States revealed the devel-

opment and subsidence over time of broad-scale

infestation in several locations (Fig. 3). From 2002

to 2005, 21,846.6 km2 of surveyed forest area were

exposed to MPB mortality, with hotspots of extremely

high exposure (z[ 32) occurring in north-central

Idaho and north-central Colorado (Fig. 3a). Hotspots

of high (z[ 8) and very high exposure (z[ 16) were
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detected along the cascade range in Oregon and

Washington, in northern and central Idaho, in the

Bitterroot and Belt Mountains of western Montana, in

western Wyoming, in the Uinta Mountains of north-

eastern Utah, and in the Black Hills of South Dakota.

The aerial survey data indicated that the years

2006–2009 encompassed the peak of the recent MPB

infestation, with 52,799.5 km2 of surveyed Western

forest exposed to MPB mortality. The SASH analysis

detected no hotspots of extremely high mortality

exposure, but did locate large areas with high to very

high exposure, mostly in areas that had expanded past

the hotspots from the previous four-year period

(Fig. 3b). This included much of the forested areas

of the Oregon Cascades, north-central Idaho, western

Montana, western Wyoming, and north-central Color-

ado. Hotspots in Washington and South Dakota

diminished somewhat.

From 2010 to 2013, 38,879.4 km2 of surveyed

forest area were exposed to MPB mortality. Large

hotspots of high and very high mortality persisted in

south-central Oregon, north-central Idaho, western

Montana, western Wyoming, northeastern Utah, and

north-central Colorado, but most of these areas had

decreased in size (Fig. 3c). The SASH approach

allowed us to detect movements of these hotspots

over time. For example, hotspots shifted from the

western to the eastern slope of the Front Range in

Colorado. Similarly, the hotspot in western Wyoming

shifted from the northern to the southern end of the

Wind River Range. In Oregon, hotspots in the northern

part of the cascades mostly diminished over time,

while areas of high exposure increased to the south.

The hotspots in Washington decreased markedly in

area, and new, small hotspots of low to moderate

exposure appeared in western Oregon and California.

The results of the MPB hotspot analyses are

generally consistent with a previous analysis that

showed the insect has caused extensive mortality in

areas of the western conterminous United States that

include western Montana and western Idaho, north-

central Colorado and south-central Wyoming, north-

eastern Utah, and the cascade range of Washington

and Oregon (Meddens et al. 2012). A separate analysis

of FIA data determined that large areas of dead and

salvable timber, mostly the result of mortality caused

by bark beetles, exist in Montana, Idaho, Colorado,

and Wyoming (Prestemon et al. 2013).

Fig. 1 A hexagonal

sampling frame of the

continental United States,

consisting of 9810

hexagonal cells of

approximately 830 km2.

The Getis–Ord Gi* statistic

for each hexagon sums the

differences between the

mean values in a local

sample and the global mean

of all the hexagons in the

analysis. The inset depicts

one local sample in the

moving window analysis,

consisting of a focal

hexagon and its six first-

order and 12 second-order

neighbors
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Hotspots of fire occurrence density

The location and intensity of statistically significant

geographic hotspots of forest fire occurrences varied

for each of the 3 years of analysis (Fig. 4). The

MODIS active fire database in 2012 captured the most

forest fire occurrences (138,687) across the contermi-

nous United States since the beginning of full-year

data collection in 2001 (Potter 2015a). In that year,

hotspots (z[ 2) encompassed 131,035.3 km2 of

Fig. 2 Hotspots of plant

invadedness across the

southeastern United States,

from United States

Department of Forest

Service Forest Inventory

and Analysis data, using

hexagons of approximately

1452 km2 in area. Values

are Getis–Ord Gi* scores for

a plot-level invasive species

diversity and b plot-level

invasive species cover.

Values greater than two

represent areas of significant

clustering of high levels of

invadedness and values less

than -2 represent areas of

significant clustering of low

levels of invadedness
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forest, with 32,075.1 km2 in hotspots of high fire

density (z[ 8) and 5197.4 km2 in hotspots of very

high fire density (z[ 16) (Fig. 4a). The high number

of fire occurrences across the conterminous states is

generally consistent with the official estimates of area

burned nationally in 2012 (37,742.0 km2), which was

128 percent of the 10-year average (National Intera-

gency Coordination Center 2013). All 2012 fire

density hotspots were located in the western United

States, which experienced a summer heat wave

combined with record to near-record dryness follow-

ing below-average winter snowpack; this situation

resulted in below-normal fuel moisture and above-

normal energy release component indices from

Oregon, Idaho and Wyoming south to California and

New Mexico (National Interagency Coordination

Center 2013).

Hotspots of forest fire occurrence density were

more widely dispersed across the conterminous United

States in 2013 (Fig. 4b), when 98,682 fire occurrences

were detected, nearly 30 % fewer than the previous

year (Potter 2015b). Hotspots (z[ 2) encompassed

154,623.4 km2 of forest, of which 17,969.7 km2 was

in hotspots of high fire density (z[ 8) and 7136.8 km2

was in hotspots of very high fire density (z[ 16).

Areas of high forest fire occurrence density were

located in California, Oregon, Idaho, Montana, Color-

ado and New Mexico. Summer drought conditions in

Fig. 3 Hotspots of exposure to mountain pine beetle mortality

across the western United States, from United States Depart-

ment of Forest Service national insect and disease survey data,

using hexagons of approximately 54 km2 in area. Values are

Getis–Ord Gi* scores for a cumulative 2002–2005 MPB

mortality footprint b cumulative 2006–2009 MPB mortality

footprint, and c cumulative 2010–2013 MPB mortality foot-

print. Values greater than two represent areas of significant

clustering of high levels of exposure to MBP mortality. (No

significant areas of significant clustering of low percentages of

exposure, less than -2, were detected)
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the west allowed fire fuels to become extremely dry in

2013, particularly in northern California and south-

western Oregon (National Interagency Coordination

Center 2014). A large hotspot of very high fire

occurrence density was detected in the Sierra Nevada

of California, the location of the 1041.3 km2 rim fire,

the largest in the nation that year and the third largest

in California history (National Interagency Coordina-

tion Center 2014).

In 2014, hotspots of forest fire occurrence density

were generally limited to three areas: the Pacific Coast

states, the Southeast, and the southern plains states

(Fig. 4c). In that year, the MODIS satellites recorded

106,242 forest fire occurrences. Hotspots (z[ 2)

encompassed 173,018.8 km2 of forest; of this,

15,512.7 km2 consisted of hotspots of high fire density

(z[ 8) and only 3629.6 km2 consisted of hotspots of

very high fire density (z[ 16). The distribution of fire

density hotspots reflects the severe to exceptional

drought conditions that continued from previous years

and extended from the Pacific coast to the western

slope of the Rocky Mountains, and that existed across

the southern plains; areas east of the Rocky Moun-

tains, meanwhile, generally received abundant pre-

cipitation that reduced fire potential (National

Interagency Coordination Center 2015). The south-

eastern region had the greatest area burned in 2014

(National Interagency Coordination Center 2015), but

this was mostly from small, short-duration fires

occurring in the spring or autumn. Hotspots of low-

Fig. 4 Hotspots of forest wildfire occurrence across the United

States, from the moderate resolution imaging spectroradiometer

(MODIS) active fire detections for the United States database,

using hexagons of approximately 635 km2 in area. Values are

Getis–Ord Gi* scores for a 2012 b 2013, and c 2014 fire

occurrence densities. Values greater than two represent areas of

significant clustering of high fire occurrence densities. (No

significant areas of significant clustering of low fire occurrence

densities, less than -2, were detected.)
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(z[ 2) to moderate (z[ 4) fire occurrence density

were detected in southwestern Georgia, the western

panhandle of Florida, and southern peninsular Florida

(Fig. 4c).

Discussion

Broad-scale ecological monitoring efforts fall within

the realm of macrosystems ecology because they

occur at regional to continental extents while incor-

porating biological, geophysical and social compo-

nents occurring at smaller scales (Heffernan et al.

2014). As such, they present the ‘‘big data’’ challenges

of macrosystems ecology, including data collection

and management, analytical complexity, and appro-

priate handling of scale issues (Heffernan et al. 2014;

Levy et al. 2014; Ruegg et al. 2014). Broad-scale

ecological monitoring requires flexible approaches

that are quantitative, scalable, and applicable to many

types of data, while allowing for the rigorous testing of

hypotheses within a spatial framework. The spatial

association of scalable hexagons (SASH) method

described here consists of three steps (1) division of

the analysis extent into equal-area hexagons of the

appropriate size (scaling), (2) aggregation of the data

within these hexagons, and (3) completion of a Getis–

Ord hotspot analysis (Getis and Ord 1992) to identify

statistically significant geographic clusters of

hexagons.

Scaling and aggregation

The equal-area sampling frame that underpins the

SASH approach is optimized for spatial neighborhood

analysis, and can be adjusted to the appropriate spatial

resolution based on sampling considerations, ecolog-

ical processes, or the spatial structure of the data.

Specifically, a hexagonal lattice is highly useful and

convenient for spatial neighborhood analysis because

the hexagons are compactly shaped (nearly circular),

maintain equal areas across a study region, are

independent of geopolitical boundaries, and are uni-

form in their distance to the centroids of their

neighboring hexagons. The selection of the appropri-

ate size for the hexagons is a critically important step,

given that the existence of scale-dependent spatial

variation can make re-scaling and data integration

problematic (Atkinson and Tate 2000). While there is

no consistent approach for determining proper hexa-

gon size, a reasonable guideline is to base it on the

properties of the phenomenon of interest, whether

related to ecological processes, sampling size, or

spatial dependence in the data. In general, the goal is to

minimize within-zone variability while selecting

zones that are as small as possible yet encompass

enough information for robust statistics; this can be a

challenging task, however, and sometimes may need

to rely on heuristics (sensu Wong 2009). We recom-

mended three possible approaches for selecting

hexagon size, and applied each in a separate analysis,

choosing a size at which hexagons (1) are as small as

possible while encompassing enough data to allow for

robust statistical analysis, (2) reflect the scale over

which an ecological phenomenon occurs or over

which management and monitoring priorities can be

decided, or (3) encompass the distance at which spatial

autocorrelation is maximized across the sample data

set. When in doubt about appropriate hexagon size,

researchers also can vary sizes based on reasonable

estimates (such as those defined by expert knowledge)

to ensure the robustness of spatial patterns across a

sensible range.

While data aggregation will cause some loss of

information, it is a necessary step to generate meaning-

ful results when assessing fine-scale data collected

across a broad area. Selecting the appropriate hexagon

size should help minimize the loss of important

information. Depending on the type of data analyzed,

it may be necessary to standardize data within hexagons

to avoid biasing the results; not standardizing data based

on the amount of forest, for example, could miss large

proportional problems in areas with small amounts of

forest or mistakenly identify small proportional prob-

lems as large problems in areas with much forest. We

standardized both the MODIS satellite fire detection

data and the mountain pine beetle aerial survey

detection data. Similarly, the aggregation of data

collected across time requires careful consideration,

and may depend on management needs, on environ-

mental patterns and processes, or on data collection

considerations. For example, although beyond the scope

of this paper, analyses of invasive species metrics

during different five-year FIA measurement cycles

could offer a sense of areas where nonnative species

have recently become more problematic. We were able

to detect such temporal patterns in mortality caused by

MPB within three four-year periods.
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Geographic clustering approaches

Multiple geographic clustering approaches are used in

ecology (Coulston and Riitters 2003; Hernandez-

Manrique et al. 2012; Bone et al. 2013; Timilsina

et al. 2013). All have advantages and disadvantages,

and most could be applied as cluster-detection tools

within the SASH framework. We used the Getis–Ord

Gi*statistic (Getis and Ord 1992) for the SASH

analyses presented here because, as a local indicator

of spatial association (LISA) (Anselin 1995), it is

generated by a relatively robust approach that is fairly

easy to use and allows users to test for a given level of

statistical significance while identifying hotspots and

coldspots (Nelson and Boots 2008; Johnston and

Ramachandran 2014). It also is integrated into

geographic information system packages like ArcMap

(ESRI 2012) and assigns a value to all hexagons in the

domain of analysis. Local Moran’s Ii, a different LISA

approach (Anselin 1995), has similar advantages to

Gi* while additionally offering the ability to identify

statistically significant outliers, e.g., high values

surrounded by low values. This feature was not needed

for our analyses, however. Positive values of local

Moran’s Ii indicate spatial autocorrelation in values

that are extremely positive relative to the mean, while

negative values indicate spatial autocorrelation in

values extremely negative relative to the mean; at the

same time, it is impossible to tell whether values near

zero have no spatial autocorrelation or have autocor-

relation in values close to the mean (Nelson and Boots

2008), which is a potential disadvantage.

One caveat for both LISAs is that testing for local

measures of spatial autocorrelation can be affected

by the potential presence of global spatial autocor-

relation (i.e., across the analysis extent) or by the

statistical problems associated with conducting mul-

tiple comparisons (Nelson and Boots 2008; Johnston

and Ramachandran 2014). Both Gi* and local

Moran’s Ii are relatively robust to the size of the

local neighborhood, with the same general areas of

significance detected regardless of how the local

neighborhood is defined, although larger spatial

neighborhoods tend to result in a greater number of

hotspots (Nelson and Boots 2008). Meanwhile, it is

important to note that the regional extent of an

analysis can strongly affect LISAs. The selection of

the appropriate regional extent is therefore critical,

and should be based on data considerations (e.g., the

FIA program’s use of a consistent list of problematic

invasive species across the southern United States),

the extent of the phenomenon (e.g., MPB occurring

only in the western United States), or the extent at

which regional policy and/or management decisions

are made (e.g., fire occurrence densities across the

entire United States).

Another family of cluster detection methods scan a

study area to find subregions with atypical values

(Rogerson 2010). One of the most widely used,

especially in epidemiological studies, applies a like-

lihood ratio test to examine spatial and/or temporal

windows of different size and length to assess the

randomness of phenomena (e.g., Kulldorff and Nagar-

walla 1995; Kulldorff et al. 2009). This approach,

which also has been used in forest health monitoring

applications, is able to detect geographic clusters with

significantly high rates of a phenomenon and to rank

the clusters according to the statistical likelihood that

the observed rate is higher than the background rate; it

does so regardless of the actual spatial pattern of the

clusters and without having to specify cluster sizes and

regions in advance (Coulston and Riitters 2003;

Riitters and Coulston 2005). At the same time, users

must choose from among many scan statistic param-

eters and probabilistic models based on the needs of a

given application (Costa and Kulldorff 2009), which

requires a thorough understanding of the relatively

complicated approach. Additionally, computationally

intensive spatial scan tools do not currently incorpo-

rate strong cartographic capabilities, and therefore are

inefficient for making easily interpretable maps.

Kernel estimation is a third approach for identifying

spatial variability in a phenomenon of interest, by

portraying local values that are weighted by the values

of other observations in a neighborhood, with closer

locations having greater weights (Rogerson 2001;

Nelson and Boots 2008). Kernel-estimated surfaces

can easily depict locations of abundance and scarcity

of a phenomenon, as well as spatial variability (Nelson

et al. 2006). Although a useful data exploration

technique, kernel estimation is not able to determine

the statistical significance of locations with higher or

lower values (Rogerson 2001), and is only applicable

to point data. Additionally, the amount of smoothing

used in kernel estimation, which is determined by the

neighborhood from which values are averaged, has a

large impact on kernel results (Kelsall and Diggle

1995). Small neighborhoods will reveal small-scale
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features of the data, while larger neighborhoods will

reveal more general features, requiring a degree of

subjectivity in choosing an appropriate neighborhood

size (Nelson and Boots 2008).

Example analyses

The flexibility of the SASH approach is demonstrated

by three examples, which encompassed a variety of

data types, spatial extents, hexagon sizes, and data

collection timeframes. Furthermore, each of these

analyses highlighted a different aspect of forest health,

illustrating the utility of the SASH approach across a

wide range of ecological phenomena.

Nonnative invasive plant species

Invasions by nonnative plant species may cause severe

and long-term impacts on forested ecosystems (Martin

et al. 2009) and ecosystem services (Pejchar and

Mooney 2009). Because nonnative species continue to

be introduced via trade and transportation, and

because their impacts will likely increase with ongo-

ing expansion of global commerce (Lodge et al. 2006;

Hulme 2009), it is critically important to synthesize

existing data on nonnative species abundance and

distributions (Crall et al. 2006) and to be able to

understand the spatial context of these data (as

illustrated here) in order to detect regions of particular

concern. Using the SASH approach, we located

geographic hotspots and coldspots of nonnative inva-

sive plant species diversity and cover across the

southeastern United States. The analysis illustrates a

way to identify locations where nonnative invasive

plant species are concentrated and where they poten-

tially have the greatest ecological impact, i.e., where

invasive cover is greatest (Hillebrand et al. 2008).

Such information may be useful in understanding

macroscale invasion patterns and for targeting activ-

ities to detect and control nonnative invasive plant

species. The SASH approach may also represent a new

cost-effective diagnostic technology that can be used

to increase active surveillance and sharing of infor-

mation about invasive species so responses to new

invasions can be more rapid and effective (Lodge et al.

2006). Datasets, such as in the FIA plot system, that

are collected consistently and in a standardized

fashion at relatively high density across broad scales

may not be available in other parts of the world, but

similar analyses are possible at a coarser scale (i.e.,

using larger hexagons) for other data sources.

Mountain pine beetle

Diseases and insects cause changes in forest structure

and function, species succession, and biodiversity, all

of which may be considered negative or positive

depending on management objectives (Edmonds et al.

2011). Analyzing patterns of forest insect infestations,

disease occurrences, forest declines and related biotic

stress factors is necessary to monitor the health of

forested ecosystems and for understanding the poten-

tial impacts of these stressors on forest structure,

composition, biodiversity, and species distributions

(Castello et al. 1995). Using the SASH approach, we

analyzed exposure to forest mortality associated with

the MPB epidemic across the western United States

during three four-year analysis windows. Such large-

scale assessments offer a useful approach for identi-

fying geographic areas where the concentration of

management activities might be most effective (e.g.,

Potter and Paschke 2015) or where risk of future

outbreaks is highest (e.g., Bone et al. 2013). Further-

more, the SASH approach provides a straightforward

framework for continued monitoring of outbreaks,

which is necessary for determining appropriate fol-

low-up investigations. Specific examples with respect

to MPB include efforts to understand the interaction

between beetle-associated mortality and other forest

disturbances such as climate change, wildland fire, and

harvest; to quantify impacts to timber, wildlife,

recreation, and water; and to construct ecosystem

models that evaluate impacts on biochemical and

biophysical processes (Meddens et al. 2012).

Fire occurrence

As a key agent of disturbance operating at many

spatial and temporal scales, wildland fire affects forest

health both positively and negatively (Edmonds et al.

2011; Lundquist et al. 2011). Ecological and forest

health impacts relating to fire and other abiotic

disturbances are scale-dependent properties which in

turn are affected by management objectives (Lund-

quist et al. 2011). Quantifying and monitoring large-

scale patterns of fire occurrence also may help

improve understanding of the ecological and eco-

nomic impacts of fire, as well as the appropriate
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management and prescribed use of fire. Specifically,

spatially explicit assessments of fire occurrence could

help identify relatively compact areas where specific

management activities may be necessary, or where

research into the ecological and socioeconomic

impacts of fires may be required (e.g., Tonini et al.

2009; Potter 2015b). Using the SASH approach, we

present analyses of high-temporal-fidelity fire occur-

rence data, collected by satellite, that map where fire

occurrences have been concentrated spatially across

the conterminous United States during three recent

years. Similar analyses are possible in other areas of

the world, such as Australia (Oliveira et al. 2015),

Latin America (Portillo-Quintero et al. 2013), Russia

(Krylov et al. 2014), and India (Vadrevu et al. 2008),

where MODIS and other satellite data have been

applied in broad-scale analyses of fire detections.

Conclusions

Fine-scale ecological data are becoming increasingly

available across broad regions. Presenting this infor-

mation in ways that are relevant for policy and

management decisions is critically important (e.g.,

Hooper et al. 2005), but poses a major challenge.

Specifically, doing so requires a framework that

aggregates information to a spatial scale at which

ecological processes occur or at which decisions can

be made, and that can help to discern which areas need

the most attention. We propose a flexible approach

that identifies statistically significant geographic clus-

ters of ecological phenomena after aggregating fine-

scale data into scalable hexagonal cells across broad

extents. The SASH method described here is based on

an equal-area sampling frame that is optimized for

spatial neighborhood analysis and that can be adjusted

to the appropriate spatial resolution.

Because creative geographic analyses of broad-

scale data are necessary to identify places where

indicators suggest the existence of relatively poor

forest health conditions (Coulston and Riitters 2003),

the SASH analytical approach has become a founda-

tional element of annual USDA Forest Service

national reports on the status and trends of forest

health across the nation (e.g., Potter 2015b; Potter and

Paschke 2015). The results of these analyses are used

by researchers and managers to select finer-scale

locations for follow-up research activities. For the

analyses described here and in the Forest Service

reports, it is fortuitous that the United States is data-

rich, with the existence of several fine-scale standard-

ized ecological datasets that span the extent of the

country. The SASH method is not limited to North

America, however, and is a ‘‘big data’’ analysis tool

that, regardless of region, has potential application for

a broad range of macrosystems ecology studies

requiring the rigorous testing of hypotheses within a

spatial framework. The North American hexagon that

was the foundation of the analyses presented here is, in

fact, a single face of a truncated icosahedron fit to the

globe (White et al. 1992). That global truncated

icosahedron can be configured to position a hexagon

over any area of interest, which can then be subdivided

into multiple hexagons of appropriate area. Tools also

can be imported into Geographic Information Systems

programs to generate hexagons of desired size for a

given study region. Additionally, while it is desirable

to use fine-scale data collected in a standardized

fashion and at a high sampling intensity, the lack of

such data is not necessarily a limitation. In such cases,

the flexibility of the SASH method allows for the

aggregation of data to larger hexagons and, therefore,

to coarser scales of analysis.
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